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Abstract

*4

In this report, short space implementation of image restoration

systems such as Wiener filtering to avoid the image non-stationarity

problem is discussed. It is demonstrated by way of examples that short

space implementation leads to a significant performance improvement in
reducing wide-band random noise relative to the traditional approach in

which the entire image is processed by a linear space invariant filter.
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1. INTRODUCTION

There exist a number of practical situations in which the restoration

of a degraded image is important and consequently the problem of image

restoration has received considerable attention in the literature (1,2).

In many cases such as Wiener filtering (3), power spectrum filtering (4),

etc.,* the restoration techniques are based on the assumption that an image

can be modelled by a stationary random field, and restoration is achieved

by filtering the degraded image with a linear space invariant restoration

filter.

For a typical image, each part of an image generally differs suffi-

ciently from other parts so that the stationarity assumption over the entire

image is not generally valid. One approach to reduce the effect of the

non-stationarity problem is to implement a restoration filter on a short-
space basis in which an image is divided into many subimages and each sub-
image is restored separately and then combined. The notion to implement an

image restoration system on a short-space basis to reduce the image non-

stationarity problem has been considered in the literature (5,6,7). For

example, Hunt and Trussel (5) segmented the image by overlapping two
dimensional (2-0) rectangular windows for an MAP image restoration system.

Lim (6) segmented the image by overlapping 2-D separable triangular windows

for a spectral subtraction im'age restoration system. Even though the

importance of short-space processing has been observed in the context of

specific recent image restoration techniques, it has not been demonstrated

in the more traditional restoration techniques such as Wiener filtering.

In this note, we demonstrate by way of examples that short-space imple-

mentation can noticeably enhance the performance of well known image

restoration techniques such as Wiener filtering.

In section 11, we discuss the model of image degradation considered

in this note and the Wiener filtering technique for image restoration. In

section 111, we discuss short-space implementation of Wiener filtering. In
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section IV, we illustrate and discuss various examples which demonstrate the

importance of short-space processing for image restoration by Wiener filtering.

1I. IMAGE DEGRADATION MODEL AND WIENER FILTERING

The degradation that will be considered in this note is additive

random noise. Specifically, a degraded image y(n1 ,n2 ) is represented by

y(n1 ,n2) = f(n1,n2 ) + d(n1,n2) (1)

where f(n1 ,n2 ) is a noise-free image and d(n1 ,n2) is additive random noise

uncorrelated with f(n1 ,n2). The restoration problem is to restore

f(n1 ,n2 ) from the degraded image y(n1 ,n2 ).

If f(n1 ,n2 ) and d(n1 ,n2) are assumed to be samples of stationary

random fields uncorrelated with each other, then the optimum linear filter

which minimizes the mean square error between f(n1 ,n2 ) and the processed

image is the non-causal Wiener filter whose frequency response H(W1, 2 ) is

given by

Pf(wl ,w2) (2)
H(l'w2) PFw1 w2) + Pd(w 'w2 )

In equation (2), Pf(wl',w2 ) and Pd(wltw2) represent the power spectrum of

the image and degrading random noise respectively.
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Image restoration based on equation (2) requires a priori knowledge of

Pf( W1 2 ) and Pd(wl,w 2). In some applications (8,9), Pd(ul,w2) is known

exactly and in many others (2) the estimation of Pd(wlw2) is relatively

simple. In this note, we assume that Pd(wl,w 2 ) is known a priori. To

estimate Pf(wlsw2), a common procedure used is to average the spectral

density over many different images or prototype images. Alternatively,

Pf(wlw 2) could be estimated by

Pf(WlW 2) = S[k IY(w1,w2)I - Pd(wl,tw2)] (3)

where Y(wlw2) is the discrete space Fourier transform
1 of y(nl,n2),

"k" is a normalization constant between power and energy spectrum and "S"

is some form of smoothing operation. Subtraction of Pd(w1,w2) reduces

the bias due to the noise power and the smoothing operation reduces (10) the

variance of the spectral estimate. Estimating Pf(wlw 2) in a manner similar

to equation (3) has the advantage that the estimated Pf(w1 ,w2 ) is derived

from some aspect of the signal f(nl,n 2 ) and consequently is data-adaptive.

Once H(w , 2 ) is determined, f(n,,n 2 ) is typically estimated by
2

f(nl,n2) = F1 IY(wl,w2) H(wlw 2)] (4)

1. Definitions for various terms such as discrete space Fourier transform,
power spectrum, and energy spectrum,and determination of the normalization
constant "k" can be found in (6,10).

2. Since equation (4) is implemented using the Discrete Fourier Transform
(OFT) and Inverse Discrete Fourier Transform (IDFT), some aliasing may
occur at the image boundaries. Such aliasing can be reduced by in-
creasing the size of the OFT and IDFT. The smoothing operation in
equation (3) also reduces the aliasing problem, since from equation (2)
a smoother spectral estimate of P (w p ) generally corresponds to a
shorter unit sample response of the es~lting filter.

3

L



where f(n11 n2) represents an estimate of f(n1 ,n2) and F
1 represents the

inverse discrete space Fourier transform operation. The Implementation of

non-causal Wiener filtering by equation (4) corresponds to processing the

entire image with a linear space invariant filter. As will be discussed in

section IV, the performance of this implementation is poor in reducing

additive random noise partly due to the image non-stationarity problem.

III. SHORT SPACE IMPLEMENTATION

To reduce the effect of the image non-stationarity problem, a reason-

able approach is to implement Wiener filtering on a short space basis in

which the degraded image is divided into many subimages and each subimage

is restored separately and then combined. One such approach is to first

apply a short space window function wtj(n1 , n2 ) to y(nl ,n2 ) in equation (1)

so that

y(nl ,n2) • wij(nln 2 ) o f(nl,n 2) • w j(nl ,n2 ) (5)

+ d(nl ,n2) • Wjj(n l.n2 )

Denoting y(nl ,n2 ) , Wlj(n l n2 ) by yij(nl,n 2 ) and using similar notation

for the remaining two terms, equation (5) can be written as

yjj(nl,n 2) . f1j(nl,n 2 ) + d1j(nl,n 2) (6)
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Equation (6) is identical in form to equation (1). By substituting the roles

of f(n1 ,n2), d(nl,n 2) and y(nl,n 2 ) in equation (1) for f i(nl,n2 ), dij(nl,n 2 )

and Yij(nln 2 ) in equation (5), the discussions in section II can be applied

to estimate f1i(n1,n2 ) from Yij(nln 2). Since the essence of short space

processing is data-adaptive filtering, the estimation of Pf(Wl9w 2) from

Yjj(nl,n 2 ) in constructing H(wIw 2 ) should be performed in a manner similar

to equation (3). Once each subimage f i(nl,n2) is estimated, the entire

image can be constructed by

f(nl,n 2) = z fj(nl,n2 ) (7)

ij

To successfully implement Wiener filtering on a short space basis,

the window function wtj(nl,n 2 ) must be carefully chosen. For example,

to reconstruct an image from its subimages by equation (7), w i(nl,n 2) has

to satisfy the following equation;

wij(nl nl ) = 1 for all nl,n 2 of interest. (8)

In addition, wij(nl,n 2) is desired to be a smooth function to avoid

some possible discontinuities or degradations that may appear at the

subimage boundaries in the processed image. Two window functions which

have the above properties are 2-D separable triangular or Hamming window

overlapped with its neighboring window by half the window duration in each

dimension (6).
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In summary, in estimating f(nl ,n2) from y(nl ,n2) by short space imple-

mentation of Wiener filtering, we first divide y(nl,n 2 ) into subimages and

the non-causal Wiener filter is applied separately to each subimage. The

resulting subimages are then combined to form an estimate of f(i ,n 2). In

the next section, we illustrate by way of examples the performance improve-

ment that can be achieved by short space implementation.

IV. EXAMPLES AND DISCUSSIONS

In this section, we illustrate and discuss various examples which

demonstrate the importance of short space processing for image restoration

by Wiener filtering. In Figure I are shown two noise-free images of

256 x 256 pixels with each pixel represented by 8 bits. In Figure 2 are

shown two degraded images at S/N ratio of 10 dB that were generated by

adding zero mean white Gaussian noise to the images of Figure 1. The

Gaussian noise was digitally generated and S/N ratio is defined by

Variance of f(nl,n2) (9)
S/N ratio = 10. log Variance of d(n1,n2)

In Figure 3 are shown typical images obtained by filtering the degraded

images of Figure 2 with a linear space invariant non-causal Wiener filter.

In Figure 4 are shown the results of short space implementation of a non-

causal Wiener filter.

In estimating the image power spectrum Pf(WI ' 2) to generate the

images in Figure 3, a variety of different ways including those discussed

in section I have been considered. In all cases, we have observed that the

background noise can be noticeably reduced only at the expense of noticeable

blurring of the resulting images. The images shown ~In Figure 3 are typical

6
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Fig. 1. Original images.

1 (2)]

Fig. 2. Images in Fig. 1 degraded by additive Gaussian
noise at S/N ratio of 10 dB.
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Fig. 3. Images in Fig. 2 processed by a space
invariant Wiener filter.

ITN-80-1 1 ()

Fig. 4. Images in Fig. 2 processed by short space
implementation of a Wiener filter.
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examples. This seriously diminishes the usefulness of Wiener filtering in

reducing background noise in the context of image restoration.

The images in Figure 4 were obtained by estimating the power spectrum

of each subimage in a manner similar to equation (3) so that the estimated

power spectrum is data adaptive. The subimage size (window size) used in

the short space implementation is 8x8 pixels for the "clock" picture and

32x32 pixels for the "aerial view of a villaqe" picture and the window

shape used is a 2-D separable triangular window. The subimage size was

chosen based on the considerations that a too large subimage size has the

image non-stationarity problem and a too small subimage size leads to per-

formance degradation due to the lack of available data to process. For the

types of images that we considered such as the two images used in this note,

the subimage size in the range of 8x8 pixels to 32x32 pixels produced the

best results.

For all the images in Figures 3 and 4, the amount of noise reduction

computed corresponds to S/N ratio improvement of approximately 4 or 5 dB in

the normalized mean square sense (8). The traditional approach of Wiener

filtering achieves this noise reduction at the expense of noticeable blurring

of the resulting images. Short space implementation, however, achieves the

same noise reduction with significantly less blurring of the resulting images

than the traditional approach.

Even though the performance obtained by short space implementation

of Wiener filtering is clearly superior to that obtained by the tra-

ditional Wiener filtering approach in the context of image restoration,

the usefulness of short space Wiener filtering in improving image quality

or intelligibility when the degradation is additive noise is difficult

to judge from the comparison of Figures 2 and 4. However, in those

applications in which S/N ratio improvement in the mean square sense

11
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without significant image blurring is important, short space implementation

of Wiener filtering discussed in this note may be useful. Furthermore, there

is considerable room for further improvement in the short space implementation

technique. For example, in this note we have divided an image into sub-

images by imposing arbitrary boundaries. If an image is divided into sub-

images at more natural boundaries such as image edges, the system per-

formance may improve. These and other potential improvements are under

consideration.

In this note, we have considered short space processing to reduce the

image non-stationarity problem in Wiener filtering. In addition to Wiener

filtering, we have also considered other image restoration systems such as

power spectrum filtering (4), geometrical mean filtering (4), etc. which

are based on the assumption that an image can be modelled by a stationary

random field. In all these cases, we have also observed that short space

implementation similar to tat discussed in this note leads to a significant

performance improvement over the traditional approach in which the entire

image is processed by a linear space Invariant filter. From these results,

it appears that any image restoration system based on the stationarity

assumption of an image will benefit from short space implementation in which

each subimage rather than the entire image is assumed to be stationary.
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